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SUMMARY 

Heterogeneous equation systems in a pair of coupled co-ordinate systems are solved by a finite element 
method. The specific physical application studied is the effect of temperature on single-well chemical tracer 
(SWCT) tests to measure residual oil saturation (volume fraction of immobile oil phase) remaining after 
waterflooding of an oil reservoir. Since temperature effects are caused by injecting cooler surface fluid down 
a well into a warm reservoir, the vertical temperature profile in the wellbore as well as the temperature 
distribution in the porous oil-bearing layer must be considered. 

The entire system is modelled to account for the different transport mechanisms. However, it is expedient 
to divide the connected geometrical region into two model domains. The equations for each submodel are 
expressed in an appropriate set of co-ordinates. The variational formulation of each model is then discussed. 

A significant temperature effect on the estimation of residual oil saturation occurs when the radial 
temperature and concentration wave propagation speeds in the porous formation are about the same. In this 
case the temperature gradient is located across the chemical tracer bank, causing the chemical reaction rate 
to vary radially. The temperature effects are demonstrated for two actual field tests in complex reservoirs. 

KEY WORDS Heterogeneous Equations Finite Element Residual Oil Saturation Single-well Chemical Tracer Test 

1. INTRODUCTION 

The single-well chemical tracer (SWCT) test was developed to measure residual oil saturation 
(SOr) after waterflooding of oil reservoirs. The underlying principle of the SWCT method is the 
chromatographic separation caused by local distribution of the tracers between flowing and non- 
flowing fluids. This method had its first field test in 1968 and was patented in 1971.' Several field 
applications of the SWCT method were reported in 1973.* The 200 field tests performed to date 
have proved the practical applicability of the method. 

*On  leave from Pusan National Institute of Technology, Pusan, Korea. 
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This method involves three time periods-injection, shut-in and production. During the 
injection period, a carrier fluid containing a reactive (primary) tracer is injected into the oil- 
bearing formation through a well. After an appropriate amount of carrier fluid-reactant solution 
is injected, the solution is pushed away from the well by injection of reactant-free carrier fluid. 

The carrier fluid-reactant solution is then permitted to remain at rest in the formation for a 
shut-in period. During this time, part of the reactant tracer reacts to form a product (secondary) 
tracer. The fluid is then produced back into the same wellbore from which it was injected. Since 
the unconsumed reactant and the product have differing partition coefficients between the carrier 
fluid and the immobile phase, they are chromatographically separated in their passage through 
the formation during this production period. The amount of separation is quantitatively related 
to the saturation of the immobile oil phase. 

In the field test the concentrations of reactant and product are measured at the point of 
production and plotted versus the volume produced. These results are matched by computer 
simulation of the equations governing the tracer behaviour during the three time periods. From 
the best fit, the relative proportions of mobile and immobile fluids in the formation can be 
determined. 

In actual field SWCT tests the injection fluid temperature at  the surface is normally lower than 
the subterranean reservoir temperature. In some high-temperature reservoir cases the temper- 
ature difference can be as much as 180°F. The injection fluid temperature may not reach the 
reservoir temperature before entering the formation because of limited heat transfer in the well. 
This causes cooling near the point of injection. 

The rate of the chemical reaction is highly temperature-dependent. According to the Arrhenius 
kinetics, the reaction rate is exponentially dependent on temperature. The reaction rate in the 
chilled zone is thus slower than that in the higher-temperature zone. Because of this effect, the 
product tracer profile may be effectively displaced from the reactant tracer profile towards the 
high-temperature zone. By accounting for this thermal separation together with the chromato- 
graphic separation, the simulation estimate of the residual oil saturation value becomes more 
reliable. Temperature effects on the ideal model, which is applicable to SWCT tests in relatively 
homogeneous sandstone formations, were first reported by Tezduyar et d3  

In contrast to sandstones, the pore structure of carbonate formations is often very heterogen- 
eous. Because of this non-uniformity in flow structure, the local tracer distribution may not attain 
the equilibrium assumed by the usual theory. 

The pore diffusion model proposed by Deans and Carlisle4 accounts for local concentration 
gradients by introducing a local (internal) domain at every point in the global (external) domain. 
This idea was earlier used by Horn5 to describe transport and flow in a general chromatographic 
system. The concentration distributions within the external domain are governed by transport 
equations which have additional source terms determined by the fluxes in the local domain. The 
interfacial source terms maintain continuity conditions between the two subdomains. The local 
tracer concentrations are governed by diffusion-dominated partial differential equations in the 
internal domain. The concentration in the external domain is the boundary condition at the 
interface of the internal domain for each tracer. 

The temperature effects on the pore diffusion model are studied in this work. The thermal 
diffusivity is normally much larger than the molecular diffusivities in a carbonate pore system, the 
local temperatures of internal and external domains can be assumed to be equal. 

The porous reservoir formation is assumed to be a horizontal layer of uniform thickness. 
Incompressible radial flow occurs within this layer. The centre plane of the permeable layer is 
assumed to provide symmetry conditions for the distribution of all unknown variables; thus the 
upper half of the layer is chosen as the computational domain. The computational domain for the 
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SWCT test accounting for the heat conduction between over/underburden impermeable layers is 
shown in Figure 1. The concentrations and temperature at the formation face are required to be 
known as boundary conditions. The tracer concentrations at this face are assumed to be the 
injected concentrations at the surface. However, temperature rise of the fluid while flowing down 
the wellbore cannot be neglected. 

The temperature of the fluid in the wellbore is first computed, accounting for the heat gained 
from the surrounding earth. The wellbore domain is also shown in Figure 1. Incompressible flow 
in the wellbore is modelled in a 1D space, which again acts as an external (boundary) domain of a 
2D (axisymmetric cylindrical, internal) space surrounding the wellbore. The heat flux between the 
two subdomains is included as a source term in the external domain equation. It is computed 
from the temperature gradient in the internal domain. The temperature in the external domain is 
the boundary condition for the internal domain equation at the interface. 

The SWCT and wellbore problems are similar, in that the equations are expressed in coupled 
co-ordinate systems with flux terms in the external domain and boundary conditions for the 
internal domain. The difference between the two problems is in the nature of the internal 
domains. The internal domain for the wellbore problem is a simply connected region and the 
external domain is one surface of the internal domain. However, the external domain in the pore 
diffusion model surrounds an infinite number of independent internal domains, each of which 
communicates only with the external domain at the point where the local domain is defined. 

2. THE PROBLEM STATEMENT 

Consider a domain SL consisting of several subdomains; the space dimensions and even the co- 
ordinate systems for the different subdomains may not be same. The entire domain is an assembly 

Wellbaro 
Surface 

III - 

Figure 1.  The geometry and the computational domains 
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of the subdomains involved, i.e. 

n = {W of w@>,= 1 ,  , , , ,nm*t,  (11 
where nmat is the number of subdomains and n$) is the number of space dimensions for W). The 
superscript p, which is the index for the subdomain number, is parenthesized. The conventions for 
the superscripts and subscripts used throughout this work are given in Appendix 11. 

For the case when the co-ordinate systems for the subdomains are not equal, the spatial co- 
ordinates for each subdomain must be defined individually: 

(2) x(’) E @P ). 

However, the time co-ordinate for investigating concurrent behaviour of the unknown variables 
is uniquely defined by 

Consider the following vector partial differential equation governing the behaviour of the 
dependent variables: 

(1 + B)d$/dt  + u -Vv- V . ( y V v )  + R  = F o n R .  (4) 

( 5 )  

A vector of unknown variables, v, is defined by using two superscripts as follows: 
m) v =  {+ },=, ~ ~ ~ , . . . , , ~ ~ ~ ~ ,  ~ = l ,  ..., n ~ ~ , ’  

where I is the counter for the dependent variable in the subdomain p, and I !&, and Z W e  are the 
beginning and end counts for the dependent variables in the pth subdomain. These counts are 
introduced to avoid confusion in the numbering of the dependent variables, especially for the pore 
diffusion model. 

An internal subdomain may be an assembly of independent spaces as given by 

(6) (P)- R(P) - {  k } k = l  , . . . .  n p l )  

where npl is the number of independent spaces in Q(j’). 

The number of space dimensions and the number of unknown variables in each subdomain, 
and the nature of the internal subdomain, are discussed for each model, along with the initial and 
boundary conditions. 

Remark I .  The subdomain a(’) is designated to be the external subdomain. An interfacial 
source term F appears in the subdomain equations in order to maintain the continuity conditions 
for the distribution of dependent variables between the two subdomains. The term F vanishes in 
the equations for the internal subdomains. 

The wellbore model 

The internal subdomain a(’) in this model is a connected region of 9’ representing the earth 
surrounding a wellbore, and the wellbore is the external subdomain a(’). The entire domain is 
composed of two subdomains, i.e. 

These subdomains are 
(7) = a(’) u Q(’). 
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where H is the height of the wellbore domain, R ,  is the radius of the wellbore and R ,  is the radial 
co-ordinate at the boundary of the computational domain; R ,  should be large enough to be 
beyond the influence of the wellbore cooling. The numbering of the subdomains, the various 
media involved and the dependent variables are shown in Table I. The dependent variable vector 
in this model is given by 

The non-zero terms in equation (4) for the wellbore model are shown in Appendix I. The initial 
temperature distribution assumes a constant geothermal gradient g T ,  i.e. 

T=T(z)=  T,+g,(H-z) ,  (1 1) 

where T, is the earth surface temperature. 
The boundary conditions are 

T = T, at z = H on Qcl) and Qc2), (12) 

aT/az= 0 at z=O on QC1) and Qc2), (13) 

$11(1 )  at r = R ,  on (14) 

T= T,(z) at r = R ,  on Q(2), (15) 
where TE(z)  is the earth temperature given by equation (1 1). 

The pore difision model 

The external subdomain in this model is a subset of g2 and is composed of two subdomains: (1) 
flowing fraction of the permeable layer and (2) the impermeable layer. Temperature is the only 
unknown variable in the impermeable layer, and is governed heat conduction. Both temperature 
and tracer concentrations are unknown in the permeable layer. 

Subdomains 1 and 2 represent the flowing fraction of the permeable layer and the impermeable 
layer respectively; the co-ordinates xcl) E a(') and x(*) E are of the same axisymmetric system. 
Coupling of equations in the mixed co-ordinate system occurs between Q(') and Qc3). The external 
domains are defined by 

QC1) = ( ( r ,  Z)kECR,, Rml, Z E t O ,  H,I}, (16) 

((~,z)I~ECR,,R,I,~ECH,,Z~I), (17) 

where H ,  is the half-height of the permeable layer and R, ,  Z ,  are the radial and axial co- 
ordinates at the computational boundaries. 

Table I. The numbering of the subdomains, the various media involved and the dependent variables for the 
wellbore model 

Dependent variable number 
Subdomain 

Domain Subdomain Medium number 1 

n a(') of 5e' Wellbore 1 T 
n(" of 9 2  Surrounding earth 2 T 
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7 

, 

The internal subdomain which represents the dead-end pores in the permeable layer is an 
assembly of many independent spaces ni3) (which are all subsets of a') as shown by expression 
(6). Each domain is assumed to have an average length I and is attached at a particular node in the 
flowing fraction of the permeable layer. Therefore the domains are given as 52i3), k =  1, . . . , np,, 
where npl is the number of nodal points in the permeable layer. The co-ordinates for these dead- 
end pore subdomains are 

R ' 3 ' = { y k l y k E [ 0 , 1 ] , k = 1 , .  . . ,np,>. (18) 
The temperature at each stagnant pore is assumed to be equal to the temperature at the flowing 

part where the pore is attached, i.e. 

T(r, 2, t ,  y ) =  W ,  z,  t )  VY E LO, 11. (19) 

This can be justified in heterogenieties of centimetre size scale, typical of carbonate pore 
structures, because of their large thermal conductivity.6* ' Temperature is thus eliminated as a 
dependent variable in these subdomains. The numbering of the subdomains, the various media 
involved and the dependent variables are shown in Table 11. The complete set of dependent 
variables in the entire domain is given by 

> .  

r 

(5) 
Note that the dependent variable count for subdomain 3 starts with 2. The number 1 is 

assigned to the temperature, which is equal to the external domain temperature according to 
equation (19). Each dependent variable thus has an equivalent number throughout the entire 
domain. However, additional indices, the beginning and end counts, have been used to keep this 
numbering in order, as shown in Table 111. 

The non-zero components of the velocity vectors are the radial velocities in the flowing fraction 
of the permeable layer (i.e. u?')).  However, since the equilibrium model used for the temperature is 
different from the model applied to the concentrations, their velocities differ. The term R in 

Table 11. The numbering of the subdomains, the various media involved and the dependent variables for the 
pore diffusion model 

Dependent variable number 
Subdomain 

Domain Su bdomain Medium number 1 2 3 

n Qcl) of W z  Flowing fraction 1 T C A  CB 
ncz) of W z  Impermeable layer 2 T 
W) of @ Stagnant fraction 3 C* C* 
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Table 111. Beginning and end counts for dependent variables 

The wellbore model The pore diffusion model 

Material number Material number 

1 2 1 2 3 

Figure 2. Boundary conditions for the SWCT domain: a= 1, injection period; a=O, shut-in and production periods 

equation (4) represents the source (or sink) due to the chemical reaction A +B. The velocity field 
and all the coefficients in equation (4) are described in Appendix I. 

The original reservoir conditions are used as the initial conditions for the entire domain. The 
boundary conditions for the external subdomain are shown in Figure 2. The boundary conditions 
for the internal subdomains are 

$'(3)(r ,  z, t, y )  = $'(')(I-, z, t )  at y=O, (21) 

d ~ + h ' ( ~ ) / d y = O  at y=l .  (22) 

3. THE FINITE ELEMENT FORMULATION 

In the discretization of R into element subdomains fie, e = 1,2, .  . . , n,,, only one set of elements is 
used regardless of which R(") the element Re belongs to. Therefore n,, is the total number of 
elements in the entire domain a. It is assumed that 

e =  1 
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Let Y'-'(") and Yr(") denote the weighting and trial solution function spaces for the subdomain 
Q ( P ) :  

Y'- ' ( r )  = { w ' ( C ) I w ' ( f l ) ~ ~ l ( n ) ,  wr("(x)=o, on X E r p , } ,  (25) 
Y r  ( a )  = { $ ' ( r )  I $ ' ( r )  E H (R), $ ( f l  '(x) = gr (p), on x E r $r,?,}, (26) 

where r represents the boundary and g denotes a Dirichlet-type boundary condition. The 
variational form of equation (4) satisfying the boundary conditions and the associated initial 
conditions is given as follows: 

The treatment of the flux term in the variational formulation is described for each model. The 
streamline-upwind/Petrov-Galerkin weighting functions used in this work are described else- 
where.3* * A predictor/multicorrector algorithm' is used for time integration. 

The wellbore model 

Since the wellbore domain R(') is a part of the boundary of R(') can be called I- ' and a(') 
can be simplified to R. Temperature is the only dependent variable which covers the entire 
domain, thus the superscript I and the subdomain number 2 may be dropped without ambiguity. 
The boundary of the boundary domain r' is denoted by Tr  and is decomposed as 

rr = r;u r;, (28) 

@= r; n r;. (29) 

The boundary conditions are given by equations (12) and (13). On the other hand, the boundary 
Tof the domain R is assumed to be decomposed as 

r=r'Urgurh, 
0 = r n r, = r, n r, = r,, n r 

The boundaries Tg and r, admit the Dirichlet- and Neumann-type boundary conditions given by 
equations (12)-(15). The boundary condition (14) indicates that the temperature on r' is 
controlled only by the equation on r Therefore the weighting function on R is required to be 
zero along r ', i.e. 

w = O  o n r ' .  (32) 
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The flux term in the variational formulation (27) is a boundary integration which can be rewritten 
by using the divergence theorem, 

w1 yV$ - n dT ' = V.(  wnyV$) dR= Vwn .(yV$)dR + WnV*(yV$)dR, (33) 

where wR denotes the lifting of w1 on R and n is the outward unit normal vector on r'. The 
weighting function wn is required to vanish along all boundaries except r'. The last term in 
equation (33) can be replaced using equation (4). Since both weighting functions w and wn are 
chosen from the same space ( H ' ) ,  wn is the complementary weighting function along r'. By 
redefining the weighting functions as 

I 1 b 

V = { w l w ~ H l ( R ) ,  w = O  on r, and I'F}, (34) 
the weak form for the whole domain becomes 

given g, h and $o find $ E Y, t E [0, T I ,  such that for all w E V 

where a is the interfacial area per unit volume of wellbore between the two subdomains, which, for 
cylindrical co-ordinates, is equal to 2/R,. The spatial discretization of the variational formulation 
(35) can be performed by a standard finite element procedure. 

The pore digision model 

This model assumes that the internal domains are uniformly distributed in the flowing fraction 
of the permeable layer. In the numerical approximation an associated subdomain is attached 
to every node in the external domain in the permeable layer (R(')). Therefore the number of 
independent subdomains in is the same as the number of nodes in R('). A finite element mesh 
which contains the one-dimensional subdomains is shown in Figure 3. It is also assumed that the 
contribution of each space in Rf3) is limited to the corresponding node in a('). That is, there is no 
cross-diffusion between adjacent spaces in 

The weak formulation used in the wellbore model was not used in here because of the cross- 
contributions which occur in the formulation of the flux term. In order to remove the cross- 
contributions, the projection of the interpolation function of a given node in on Rcl) is 
assumed to be a delta function whose area is equivalent to the integration of the associate flux 
term over R('). Thus the flux term becomes 

a , p c 3 )  

w1(1)ay'(3)V(3))IC1'(3) .ndf i ( ' )x  wl(') ~ y ' ( ~ )  dR(')) ( T )  y = o  , (36) 
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Figure 3. The finite element mesh used in the pore diffusion model (60 x 10+60 x 6 x 5 elements) 

where a is the interfacial area per unit volume between O(’) and W), given by 

f( 1 - sp’, 
1( 1 -f) (1 - sp) ’ a= (37) 

The y-axis is assumed to be orthogonal to the I-z plane. The correct weight of the flux term in the 
differential equation can be maintained in the discretized formulation using this approach. 

In the finite element discretization the interpolation function associated with a nodal point ‘A’ 
(i.e. NA) is piecewise continuous and the value of N ,  is zero on the entire domain except for the 
elements sharing the node A. In the numbering of nodes, only one sequence is used regardless of 
which subdomain the node belongs to. Therefore nodal values of the dependent variables can be 
interpolated by the finite element interpolation rule over the entire domain. At this point one can 
see that the computation of the element level matrices and vectors can easily be performed by 
defining the element domain. It is worth mentioning that the spatial dimensions of the sub- 
domains may differ from each other. Therefore the shape functions, the integration rules, the 
number of dependent variables and the coefficients involved in the equations all depend on the 
element domain. Moreover, each node in Ocl) includes the contributions of a branch in W) in 
order to compute the flux term. As long as these are kept track of along with the element 
subdomains, the weak form can be discretized using a consistent finite element approach. 

Remark 2. The heat of reaction is neglected in this problem because of the low concentration of 
the reactive tracer and the slow reaction rate. The heat equation is independent of the concentra- 
tion equations but the concentrations are temperature-dependent. Thus the temperature equa- 
tion is solved first at every time step. Once the temperature at every node is determined, the first- 
order reaction rate can be calculated. The mass balance equations, which are linear, can then be 
solved. 
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Remark 3. The assembly of the global matrices for the heat equation over Qc') and Qf2) is 
straightforward. However, the assembly of the global matrices for the mass balance equations is 
worth illustrating. For example, a 12-node mesh consisting of one external domain element and 
our branches for dead-end pores is shown in Figure 4. In this figure the sequences of numbers (l), 
(2), . . . , (12) and 1,2, . . . , 2 4  stand for the node and equation numbers respectively. The global 
matrix resulting from the finite element formulation of the tracer equations is shown in Figure 5. 

4. RESULTS 

The variational formulations of the two submodels (wellbore and pore diffusion models) were 
coded into computer programs. The behaviour of the dependent variables was then computed in 
the entire spatial and time domain for several examples. Appropriate data obtained from 
reservoir and SWCT operating conditions were used for the computation (see references 3 , 6  and 
7 for details). 

In the wellbore model, only the injection period of the SWCT needs to be considered to provide 
the required boundary condition for the fluid injection into the formation. 

Several aspects of tracer behaviour in the pore diffusion model are first investigated by 
computer simulations. Two field tests are then matched to find the best-fit parameters, including 
the residual oil saturation value. This is the primary objective of the field test. 

Results for the wellbore model 

Figure 6 shows the temperature contour lines in the wellbore domain after two days of 
injection. The initial contours were the horizontal lines given by equation (1 1). The horizontal 

Figure 4. An example mesh to illustrate the assembly of the global matrix for the pore diffusion model 
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Figure 5. The global matrix for the pore diffusion model equations corresponding to Figure 4 0; contributions from the 
flow domain equations (excluding the flux term); 0; contributions from the flow domain equations (including the flux 
term); 0; contributions from the flux term in the flow domain; A ;  contributions from the stagnant domain equations 

parts of the contours represent initial conditions, where the effect of the injection fluid has not 
penetrated. The wellbore region includes tubing, annulus fluid and cement as well as the 
formation. These materials have different effective thermal conductivities. This material layering 
was represented in the computational domain by different vertical layers of elements, each of 
which has its own thermal conductivity. The small horizontal segments in the contour lines 
adjacent to the wellbore were produced by using a large thermal conductivity in the layer 
representing fluid inside the casing. 

The temperature versus time plot shown in Figure 7 represents the temperature history at  the 
formation, r =  R ,  and z=O, during the injection. The initial temperature was 208 "F. The surface 
water temperature was 38 "F. This temperature history is the maximum possible temperature, 
since the heat transfer coefficient in the casing fluid is assumed to be very large. If the heat transfer 
coefficient is assumed to be zero, the injection temperature will drop rapidly to the surface 
injection temperature and remain constant. If field data for the temperature history at the 
formation are available, the heat transfer coefficient can be estimated by matching the results 
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Figure 6. Temperature contour lines around the wellbore (after two days of injection) 

38. 
0.0 2.0 4.0 6.0 6.0 1 0 . 0  

TIME 

Figure 7. Outflowing fluid temperature at the reservoir permeable layer face 
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numerically. An estimation of the effective height of the porous layer by matching the temperature 
history was discussed by Tezduyar et aL3 

It is our purpose to determine realistic temperature behaviour in SWCT tests in order to 
estimate reliable So,-values. However, no measured temperature history for an SWCT test is 
available at this time. A lower bound on temperature effects can be evaluated by using the 
minimum temperature differences between the reservoir and the injected fluid. Therefore the 
temperature history in Figure 7 has been used as the boundary condition at the wellbore for the 
SWCT. simulations given below. 

Results for the pore difision model 

The reactant tracer distributions in the dead-end pore space at various times are shown in 
Figure 8. The columns of figures show, from left to right, the distributions at the end of injection, 
at the end of the shut-in period and after 65% of the injection volume has been produced. Various 
values of the tracer diffusivity in the dead-end pore spaces ( y 2 9  are represented in the different 
rows. With a large y2'3)-value the tracer distribution reaches equilibrium between external and 

Injection Shut-in Product ion 

Figure 8. (Continued) 
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Injection Shut-in Production 

Figure 8. Primary tracer distributions in the dead-end pore spaces: (a) y = 1ooO; (b) y = 10; (c) y = 3.0; (d) y = 1.0; (e) y =0.8; 
(f) y=0.5; (g) y=0.2; (h) y=O.1 

internal spaces. The effects of trapping and releasing of the tracer concentration distribution by 
the dead-end pore spaces are systematically shown in this collection of pictures. The tracer hold- 
up and dispersion due to the dead-end pores causes distorted tracer profiles to appear in the 
production fluid. For intermediate values of y 2 ( 3 ) ,  non-ideal effects such as early arrival of poorly 
defined peaks, long tails and poor material balance are observed. These effects are commonly 
found in SWCT field data in carbonate formations. 

Figure 9 shows the effect of temperature variation on the relative location of the reactant and 
product tracers. The wave propagation speeds of temperature and concentration vary with the 
accumulation capacities of the medium for the respective dependent variables. These capacities 
are determined by reservoir and operation conditions such as residual oil saturation, rock 
porosity, heat capacity of rock, and tracer partition coefficients between oil and water phases. 

When the speeds of the two fronts are almost the same, the temperature gradient and the tracer 
bank overlap. Because the reaction rate at high temperature is faster than that at IOW temper- 
ature, the concentration profile of the product tracer (CB) is displaced towards the high- 
temperature zone (as seen in Figure 9(a)). Figure 9(b) shows the other case, in which the wave 
propagation speed of tracer A is faster than that of temperature. The reactant tracer has been 
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[ftl 
Figure 9. Temperature and tracer profiles at the end of the shut-in period (a) with significant temperature effect; (b) with 

negligible temperature effect 

pushed into the zone of the original reservoir temperature. The small separation of tracer 
concentrations shown in Figure 9(b) is due to the reaction which occurred during injection. In this 
case the temperature effect on the estimation of So, is negligible. 

Next the arrival times of the peaks of tracer concentrations are compared between non- 
isothermal and isothermal simulations. The arrival time of tracer A (Figure lqa) )  varies with 
dead-end pore diffusivity. It arrives early in the intermediate range of y (05-5.0) for both cases. 
The peak of tracer B also arrives earlier in the isothermal simulation, but arrives later for the non- 
isothermal simulation, as shown in Figure lqb). The difference in the arrival time of tracer B 
between non-isothermal and isothermal simulations for a given y-value indicates the magnitude 
of the temperature effect. 
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Figure 10. Arrival time of the peak positions ( f=0 .7) :  (a) tracer A; (b) tracer B; 0, non-isothermal; A, isothermal 

Criteria which indicate whether an SWCT test is subject to significant temperature effects in the 
estimation of So, can now be developed. In the analysis the convection effect is considered in terms 
of wave propagation speeds. The difference in accumulation capacities of the medium for different 
dependent variables causes chromatographic separation at any given convective condition. 
Therefore the ratio of accumulation capacity for temperature to accumulation capacity for 
concentration of primary tracer is the potential for separation (abscissa of Figure 11). The value of 
unity corresponds to no separation. In real SWCT test environments the accumulation capacity 
for heat is normally larger than that for the primary tracer. Thus only ratios greater than unity are 
considered in Figure 11. 
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Figure 11. Region of significant temperature effect versus accumulation katio for the pore diffusion model 

The temperature front and tracer bank will be separated while flowing (injecting) if the ratio is 
greater than unity. Thus the amount of push fluid, which determines the radius of penetration, is 
also a measure of separation (ordinate of Figure 11). 

The thermal diffusion effect is accounted for in terms of the penetration depth. The effect of 
dispersion of the primary tracer due to the presence of dead-end pore space is quantified by 
numerical experiments. In Figure 11 the parameter domain for SWCT tests is divided into safe 
and unsafe regions, relative t‘o temperature effects on the estimation of So, in the medium range of 
y 2 ( 3 ) .  In the safe region the estimated values of So, from the non-isothermal and isothermal 
simulations are essentially the same. This information is very useful to determine when the 
expensive non-isothermal model needs to be used. Details appear in References 6 and 7. 

Two field tests, a Devonial Reef Test (test 7 in Reference 10) and a Mississippian Reef Test (test 
1 in Reference 4), were rematched using the non-isothermal simulator. Input data to the simulator 
and the procedures for obtaining best-fit values of So, were detailed in Reference 6. Tracer 
production profiles are plotted in Figures 12 and 13. The residual oil saturation values obtained 
from the isothermal and non-isothermal simulations are compared in Table IV. 

5. CONCLUDING REMARKS 

Heterogeneous equations in a mixed co-ordinate system have been solved using the finite element 
method. The variational formulations for the flux terms which control the continuity conditions 
for the dependent variables between the external and internal domains have been described for 
two cases: a simply connected internal domain and a case with multiple independent internal 
domains. For the first case the variational formulation can be generally derived and applied for 
any dimension and shape of internal domain and surface. An example is shown which gives the 
temperature distribution in a wellbore (the wellbore model). 

When the internal domain is composed of many independent spaces, the projection of the 
interpolation function of the internal domain to the external domain is assumed to be a delta 
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Figure 12. Devonial Reef Test: (a) tracer A; (b) tracer B 

Table IV. Estimated residual oil saturations for two field tests 

Residual oil saturation 
Field 
Test Non-isot hermal Isothermal 

Devonial Reef Test 0.17 0.14 
Mississippian Reef Test 0.47 0.42 
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function in order to maintain independence. Two field tests in heterogeneous carbonate forma- 
tions are resimulated using this formulation. Residual oil saturation values estimated from this 
non-isothermal simulation are three to five pore volume per cent higher than those obtained from 
isothermal simulations. This model has many other applications in the chemical engineering field, 
such as in adsorption columns, heterogeneous reactors, transport in heterogeneous porous media, 
etc. 

The effect of temperature variation on the determination of residual oil saturation by the 
single-well chemical tracer test has been bounded using the second type of formulation. The 
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Figure 13. Mississippian Reef Test: (a) tracer A; (b) tracer B 

significance of the temperature effects has been analysed in terms of potential for chromato- 
graphic separation and the value of the effective push volume. When the reactive tracer bank is 
separated from the temperature front, so that the tracer bank is located in an isothermal zone 
after injection has been completed, the temperature effect on the estimation of residual oil 
saturation does not occur. If the tracer bank and temperature gradient are co-located, the 
temperature effects can be significant. 
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APPENDIX I: THE NON-ZERO TERMS IN EQUATION (4) 

The wellbore model 

p) = (pc) ,  - 1, 
u l ( l ) ,  

1 4 ( p c ) w 1 7 4 R w ) 2 ,  

= - a ( y 1 ( 2 ) v 2 $ 1 ( 2 ) ) .  n, 
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The pore diffusion model 

f (1 - s:39 
l( 1 -f) (1 - sp,. a =  

APPENDIX 11: NOTATION 

C 

f 
I 
K 
1 
Q 
R 
S 
E 
HP 

heat capacity 
stagnant pore volume fraction 
identity matrix 
distribution coefficient 
average length of dead-end pores 
flow volume 
gas constant 
saturation 
activation energy 
half-height of porous formation 
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ko 

QI 
R w  
Greek 

K 
4 

ad 

4 
P 
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reaction rate constant 
thermal conductivity 
volumetric flow rate 
injection volume 
radius of wellbore 

dispersion parameter 
porosity 
density 

Superscripts and subscripts 

A primary tracer 
0 oil phase 
r + f 
B secondary tracer 
r rock 
W water phase 

rock + fluid (oil and water) 

Conventions for the superscripts and subscripts 

B’ 
(B)’ ith power of B 
uf(’) 

ith component of array fl 

I =degree of freedom counter, I = I&)b, . . . , I&)= 
p = material number counter, p = 1, . . . , nmat 

k = independent space counter, k = 1, . . . , npl 
j = space dimension counter, j = 1, . . . , nsd ( P )  

Qp) 
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